筑梦者
上周之前,几年内造出有用的量子计算机的前景似乎还很遥远。政府、学术机构和企业实验室的研究员还远不能聚集起足够的量子比特来建造一台简单的原理验证机。资金雄厚的加拿大初创公司D-Wave Systems出售了几台所谓的「全世界最早的商用量子计算机」,但是多年来都未能让业内专家信服这些机器能完成量子计算机理应完成的任务。
接着,就在上周,NASA(美国宇航局)在加州山景城艾姆斯研究中心的N-258号楼召开了新闻发布会(N-258号楼是NASA的先进超级计算中心所在地。——译者注)。那里从2013年开始就放置着Google从D-Wave购买的一台计算机。在那里,Google建来用D-Wave计算机做实验的量子人工智能实验室主任Hartmut Neven公布了一个真实的证据,证明它能提供量子计算机允诺的计算能力。在一个设计严格的测试中,D-Wave计算机中被称为量子退火机(quantum annealer)的超导芯片比传统处理器快了1亿倍。
然而,这种优势需要在实际的计算任务中实现,而不仅仅是有目的的测试。Neven是一个健谈的机器学习专家,他说:「我们需要让它把工程师办公桌上的实际问题变得更简单,并把它放入计算机。」这就是Martinis进入的领域。Neven认为D-Wave的量子退火机不会很快准备好为Google工程师服务,因此他雇佣了Martinis来干这活。Neven说:「很明显,我们不能只是一味的等待。为了达到一个真正的技术,我们需要克服一大串的问题。」他说D-Wave芯片上的量子比特太不靠谱,连接起来的厚度也不够。(D-Wave的CEO Vern Brownell回应说他不担心来自Google的竞争。)
Google面临的竞争对手不仅有来自D-Wave的进展,还有微软与IBM,因为他们也拥有许多量子计算的项目。但是这些公司都更加关注设计,而不是让它们变得更实用。实际上,一个关于Google项目的大致时间线估计,最快到2017年,Martinis的团队就能用100个量子比特制造一个量子退火机。D-Wave最新的芯片已经有1097个量子比特,但是Neven说一个高质量芯片或许可用更少的量子比特就能完成一些任务。一个量子退火机只能运行一个特定的算法,但是,它碰巧非常适合Google最关心的领域。麻省理工学院(MIT)林肯实验室的高级职员William Oliver研究了量子计算的潜力,他说这种应用可能非常有利于模式识别和机器学习。
John Martinis今年57岁,对解开量子物理研究复杂的链条、使其成为一个崭新的工程学科来说是一个完美的人选,他不仅能够潜心研究难懂的数学,还特别喜欢建造东西。操纵哪怕仅一个量子比特都是一个难题,因为这要涉及到量子理论、固态物理学、材料科学、精密加工、机械设计和传统电子业的组合。
Martinis个子高高的,有着亲善的嗓音,大家公认他个人已经掌握了上述每块理论和技术实施。在带我们参观他的新Google实验室时,不管是面对传统车间区域的新烙铁和机械工具,还是面对冷却和运算芯片的复杂设备,他都兴奋不已。他说:「我认为这很有趣。我能完成别人无法做到的实验,是因为我能建造我自己的电子设备。」
这种刻有Google logo的实验芯片被冷却到绝对零度以上一点点,目的是为了产生量子效应
Martinis和他的团队必须掌握许多技术,因为量子比特是如此变化多端。它们可以用多种不同的方法实现——Martinis的方法是用微电流来冷却铝环直至它们变成超导体。但不管采用什么方法,它们表示数据的方法都是微妙的量子状态,这种状态极易被热量和电磁噪声扭曲或破坏,并将计算破坏殆尽。
量子比特用它们脆弱的物理性质所做的事,正相当于传统芯片上的晶体管用电流完成的事——也就是用0和1的二进制来表示信息。但是,量子比特还有一种称为叠加态的状态,能同时表示0和1。处于叠加态的量子比特还能以一种叫做量子纠缠的现象相互联系,也就是说一个量子比特的行为能瞬间影响到另一个量子比特。有了这些效应,量子计算机中的单个运算就完成传统计算机中很多很多运算才能完成的任务。在某些情况下,随着处理数据量的增加,量子计算机比传统计算机的优势会实现指数级的增长。
无法保持量子比特的稳定状态正是我们尚未造出量子计算机的原因。但是,Martinis已经在此问题上研究了11年,他认为他已经接近答案了。他的量子比特的退相干时间(也就是量子比特保持叠加态的时长)是几十微秒——比D-Wave芯片的数据高1万倍。