冻结的永冻土。
古老海岸上的太古宙叠层石。
那么,问题来了:为什么这些微生物如此坚韧不拔?为什么它们进化到今天,能够抵抗如此高的辐射量,这些辐射量常见于太空和火星环境,却不常见于地球?例如,在永冻土中,背景电离辐射量约为每年2毫克,大致相当于单个脑CT扫描的辐射量,远远低于生活在该环境下的微生物的耐辐射量门槛。一种猜测是微生物古老的年龄。许多耐辐射微生物都是古细菌,它们进化伊始时地球上还没有臭氧层,因此完全暴露于太阳的全紫外线光谱下。那时的太阳辐射比今天强烈多了,因此地球上的一些早期统治者可能需要复制某些生存机制,即使在地球形成臭氧层后这些机制依然存在。然而,多数研究人员认为,生命起源于深海,即使大气中存在臭氧层,在那里辐射几乎都算不上什么问题。
另一个理论是,微生物具备对辐射的抵抗力纯属偶然,是它们适应地球极端环境的结果。瓦格纳解释说:“一般而言,微生物对一种压力耐受,也会对其它压力耐受。耐辐射球菌能抗高强度辐射,因此也能抗干旱,它基于的是相同的机制。”换句话说,所有能在火星上生存的微生物候选者,无论是耐辐射球菌,还是嗜盐球菌和产甲烷菌,都是在其生存环境中进化出这种独特的生存方式,耐辐射能力只是一个副产品。
那么,这些微生物到底是如何保护自已不受辐射伤害呢?一些耐盐微生物仅仅是将自己藏起来,远离太阳紫外线辐射。嗜盐球菌属鳕细胞群聚在一起,形成一层又一层微生物,表层细胞吸收太阳辐射后,深处的细胞就可免于太阳辐射。如果微生物长期自然生活在低氧、高盐的环境中,它们不会窒息。然而,天体生物学家史蒂芬-卢克解释说,这种生存策略仅在对付紫外线时有效,一旦面对电离伽玛辐射就难以奏效,因为伽玛辐射能量大,能够穿透细胞群深入抵达中心。这意味着,火星上的微生物能够藏在土壤或冰下逃避紫外线辐射,却还是难逃电离辐射。另一些微生物则运用了不同的生存方法。辐射能触发活性氧的释放,而活性氧又会损伤诸如蛋白质和DNA等细胞成分。为了对付困难,耐盐古细菌的菌紫红质能够清除活性氧,保护细胞免受损伤。